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SUMMARY

A theoretical study of the sound field from a random noise :source
above ground as measured by a receiver with finite band width is presented
herein. This study represents one phase of a general program of research
in atmospheric acoustics. For simplicity, only the far field has been
considered. The special case of a perfectly reflecting plane is discussed
first, and nondimensional curves are given of sound pressure level versus
distance for two different receiver band widths. The analysis is then
extended to the case of a plane of arbitrary impedance, and curves of
pressure level versus distance are given for typical field operating con-
ditions. The sound field consists of two major regions. In the first
the sound pressure level fluctuates about an average curve sloping approx-
imately 6 decibels per doubling of distance. Beyond a certain distance
from the source the level decreases monotonically 12 decibels per doubling
of distance. The fluctuations depend on the band width of the receiver
and on the ground impedance. With, for example, an octave band of 1,000
to 2,000 cycles and the receiver 10 feet above a ground of normal imped-
ance pc, the maximum pressure-level fluctuation is about 2 decibels and
occurs around 300 feet from the source, and the transition between the
f-decibel-slope region and the 12-decibel-slope region occurs around
700 feet from the source.

INTRODUCTION

The sound field from a point source emitting a pure tone above a
plane boundary, which has been studied by several investigators (e.g.,
ref. 1), can be divided essentially into two parts, one in which there
is a marked space variation of sound pressure due to interference between
the direct and the reflected sound and one, beyond a certain distance
from the source, in which the sound pressure decreases monotonically with
distance. In studies of sound propagation in the outdoor atmosphere there
“is generally more interest in the average rate of decay of the sound pres-
sure with distance from the sound source and less in level fluctuations
in space due to interference. In fact, these fluctuations will generally
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complicate the interpretation of the data. The sound field can be
smoothened by the use of a random noise source rather than a pure tone.
However, if the receiver has a finite band width there will still remain
fluctuations in space due to interference, a fact which does not seem to
have been generally recognized. It is the purpose of this paper to
analyze this problem theoretically and, in particular, to determine the
level fluctuations as a function of receiver band width for the case of
a random noise source with a constant power spectrum.

The present investigation was conducted at the Acoustics Laboratory
of the Massachusetts Institute of Technology under the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics. .

SYMBOLS
_x (cos 0, + B)e(d .\ é)
¢ 1+ Bcos 8, 2
c velocity of sound above plane
d mean séurce-to—receiver distance
£ frequency
o méan frequency of band pass filter
H height of receiver above plane
h height of source above plane
EE resultant mean square pressure
P sound pressure
Q image source strength
R ratio of mean square pressure with plane present to free space
mean square pressure
R, plane wave reflection coefficient

r ratio of band-pass-filter end points
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S ‘pressure $pectrum

T upper limit of time in pressure-spectrum definition
b time

W ~power spectrum

x horizontal source-to-receiver distance
B admittance ratio of reflecting plane
A path-length difference

95 grazing angle of reflected ray

A wavelength of sound

%; wavelength corresponding to £

pe characteristic impedance of air

T delay time

V¥ correlation function

ANALYSIS

The sound field about a point source above an infinite plane can be
obtained as the sum of the direct wave and the wave reflected from an
image source below the plane (ref. 1). With the geometry defined in
figure 1, the expression for the path dlfference between the direct and
the reflected wave is

A = 2hH/d (1)

Limiting the discussion to far—fleld points 1mposes the restric-
tion A <<d or

PhHfAZ << 1 (2)
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In the discussion which follows it is also assumed that h and H are
of the same order of magnitude so.that d = x; however, the analysis is
not necessarily restricted to these conditions.

Suppose that the source emits a random noise and that the corre-
sponding sound pressure of the direct wave at the point of observation
is the random function of time p(t). The pressure spectrum S(f)
of p(t) is defined (ref. 2) as .

. |
s(£) = f p(t)e™ 2™t g (3)
O

and the power spectrum w(f) 1is then

2
w(e) Timm 2 s;f)] ()

Since 7p(t) 1is assumed to be perfectly random and to contain no periodic
terms, this definition of w(f) is adequate. The correlation func-
tion (1) of p(t) 1is defined as

S

P> o0 m

T
w(v) =  Lim lfo p(t)p(t + 1) at (5)

where p(t + 1) 1is the value of the pressure at a time <t later at the
same point. The power spectrum and correlation function are related by
Fourier formulas

o0

w(f) = 4 ¥(t) cos 2xft dt (6)

e

0

¥(r) = fo w(f) cos 2xft df 7
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; The case of a perfectly reflecting plane is considered flrst, since
it illustrates the general approach to the prdblem while 51mpllfying the‘ e
mathematics involved. The discussion will then be generalized fOfthe .
case of a plane of arbitrary 1mpedance.

Perfect Reflector |

With a perfectly reflecting plane present, it is seen qualitatlvely
that V(r) 1is a measure of the interference between the direct ray at
any point and the reflected ray which starts out ‘1 seconds earlier.

If the pressure-measuring device had an infinite band width, there would
be no correlation between the two rays except for =t = 0, or

(1) .—,u/; w(e) ar (r =0) (8a)
¥p(t) =0 (r £0)  (8b)

Now, consider a recelver with a band pass filter with a range from fg
to fp- In such a case, using equation (7), the correlation function
becomes

Tp
V() =\/ﬁ Wo cos 2nft df
fa
W,
= 2 (sin 2nfy,T - sin 2nf,T
2nT ( b g ) ‘ 2

Where w, 1s the constant value of w(f). The mean square pressure at

a point P2 is
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It

PQ(T)’ [@(t) + p(t + Ti]g

= LP(t)2 +p(t + 1)% + é p(t)p(t + r)}

= ()2 + p(t + 7)% + ew(r)] (10)

where the bars indicate time averages. Only far-field points are con-

sidered, that is, points where p(t)2 ~ p(t + 7)2 or the path-length
difference between the direct and reflected rays A(= cr) is small com-
pared with the source-to-receiver distance for either ray. .Also,

p(t)% = ¥(0) = oy - £a) (11)

In the case of free space,

Pp° = p(t)? = wo(Tp - fa) (12)

The ratio of mean square pressure when the plane is present to free-space
mean square pressure is, combining the results of equatioms (9) to (12),

P2(T) _ o 2

R(r) = ;;5 seF CREDES

<sin 2nfyT - sin 2nféf) (13)

Utilizing a trigonometric identity, equation (13) becomes _

R=2+2 cos 2nfpT (1)
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where

at'hy

o]
i
0o

Two important limiting cases are: (a) 1 = 0, in which direct and
reflected rays interfere constructively and R =14 and (b) r = 1, in
which the pass filter becomes infinitesimally narrow or, equivalently,
the source becomes monochromatic, with the power spectrum becoming

infinite so that L/\’w(f) df remains Tinite and

R =2+ 2 cos 2nfyt (15)

which is the correct expression for a pure-tone source.

Equation (14) expresses R as a function of the two dimensionless

variables r and fjT. The free-space mean square sound pressure PF2

is inversely proportional to x2. Plots can be made of the recorded

sound pressure level 10 log PF2R versus the "numerical distance" %mx/hH,
with r as a parameter, since, using equation (2), ’

where N, 1is the wavelength corresponding to f,. Figure 2 shows such
plots for an octave-band pass filter (r = 2) and a half-octave-band pass

filter (r = é). The curves approach asymptotically the l/x2. curve shown

; 2

as a short-dashed line. The deviations for the narrower filter are more
pronounced than those for the broader filter, as expected. The form of
‘the variable %mx/hH and the general shape of the curves indicate that,
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for a given distance x and band-width ratio r, decreasing the mean
filter frequency f;, or the heights h and H tends to increase the;g

magnitude of the intensity deviations.

Plane of Arbitrary Impedance

The sound field of a pure tone above an infinite plane of normal
specifiec acoustic impedance pc/B is found by Ingard to be due to the
real point source and an image source of strength Q, where Q 1is a
function of the field point position, the plane impedance, and the source
frequency.  This result is adapted to the noise problem, considering
sgain only far-field points. With the source in the plane, A =0, and
the pressure spectrum of the real source is as before S(f) (eq. (3)),
while the pressure spectrum of the image source is 8(f£)q(d,B,f). The
inverse of equation (3) permits the transformation from pressure spectra
to pressures, and the resultant mean square pressure at a point is '

2

rd
N
i

f s(1 + Q) e2™It g¢
Jo

3 00

2 " 2
i ‘/; |sx + )| a

f'b 2 fb 2 :
= Wq f [1 + Re(Qﬂ ar +f [Im(Q)] ar (17)
fa fa
where w, 1s the constant value of the power spectrum (eq. (&)) in the

pass band £, to fb and Re and Im signify real and imaginary parts,
respectively. ~

The integrals in equation (17) may be evaluated by use of the asymp-
totic form of Q, valid at large distances; which 1is

Q=Ro-l:(l—Ro)(:-j‘—+ b ¥ ) ! ("18)
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where

C - s (COS eo + B)z d. + é
cl+ B cos By 2y

and R, 1is the plane wave reflection coefficient, a function of position.
Keeping lowest order terms only, equation (17) becomes

P2 = wo (8, - £a)(1 + Ro)" + T - %a)

a

(1 - Bo)(5Ro + 7) EE;;;;- (19)

=l

Dividing equation (19) by equation (12), the measured free-space mean
square pressure, yields

B2 (14 )2 4 2 Bo)(Fo + 7) (20)
hole £y

The first term in this equation is the ray-acoustics expression for plane
wave. reflection, and the second term is a small correction factor which
reduces monotonically with distance.

With the source above the plane, the pressure spectrum for the imsge
ray is

T
JF qp(t + T)e-Eﬂlft % =~Qe2ﬁlfTS (21)
0

The total pressure corresponds: to the pressure spectrum (l + Qe2ﬁifT)S,

EﬁifT)a
and the power spectrum becomes wo(l + Qe . The mean square pressure,

with filter limits f, and fy, is then
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—_— f.
b
P = wou/\ 1 + 2Re(Q) cos 2nft - 2Im(Q) sin 2xft +

2
) :

|

Following the same procedure used to evaluate equation (17), the ratio
of mean square pressure to free-space mean square pressure becomes in
this case

[Re(@)] + [Im(ca)]g ar (22)

R=1+Re2+ 2R —LT 4 (2 - Ro)
Wo(fb - fa) C

(l - Ro)(5Ro + 7) 5
oo £,

3(1 - RO) cos 2nf, 7 cos 2nfyT

2
22 |fa(fo - fa) B £b(fp - fa) + (2n7) (23)

For 1T = 0, this expression reduces to equation (20) for the source in
the plane. For Rp = 1, it reduces to equation (13) for the perfectly
reflecting plane.

Numerical Examples

In order to evaluate R in equation (23) an octave-band pass filter
is chosen with f_, = 1,000 cps, £y = 2,000 cps, and source and receiver

heights = H = 10 feet. In this case the terms in equation (23) con-
taining a frequency squared in the denominator or T in the numerator
are negligible in the far field, or

R%1+R02+230%-(-¥§%-?a-)- (2)4-)
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(This is equivalent to setting Q = RO.) For a pure tone of‘freqpency fm
i Clmyiee - : o   ‘ , -
R=1+R, + 2R cosonfr .

by’the same limiting process involved in equations (14) and (15).

In figures 3(a) to 3(d) plots of the measured sound pressure

level 10 log PFER versus source-to—reéeiver distance x . are given for

the perfect reflector (B = 0) and for the admittance ratios B = l/h, 1/2,
and 1. The broken lines correspond t0 random noise and the solid line
corresponds to a pure tone of the mean frequency of the band pass filter.

Figures 3(e) and 3(f) are similar plots for B = h = H = 10 feet,
and octave bands 75 to 150 cps and 300 to 600 cps. For these bands the

terms in equation (23) containing T in the numerator are small but not
always negligible.

It can be seen from figures 3(b) to 3(f) that above a plane of finite
impedance the sound pressure level measured near the source fluctuates
about an average curve sloping approximately 6 decibels per doubling of
distance and that at large distances from the source the measured sound
pressure level approaches a decrease of 12 decibels per doubling of dis-
tance. In particular, figure 3(d) indicates that for an octave band
of 1,000 to 2,000 cycles, with the source and receiver 10 feet above a
ground of normal impedance pec, the maximum pressure-level fluctuation
is about 6 decibels and occurs around 300 feet from the source and that
the transition between the 6-decibel-slope region and the 12-decibel-
slope region occurs around 700 feet from the source. The 1l2-decibel
slope at large distances can be predicted from the following expressions
for the image source Q and for the resultant pressure P in the far
field:

 cos 90/(B = 1) of 2 hH
~ = e | S22 o = - 1 e 26
=Ry cos eo/(B + 1) (Bx l> * (26)

|pl~2@+a) =~ xig—ﬁg (27)

~Massachusetts Institute of Technology,
‘ Cambridge, Mass., January 11, 1955.
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